Is de NPS lager als het buiten regent en er een griepgolf heerst? Zijn vrouwen meer empathisch aan de telefoon dan mannen? Kopen hondenbezitters eerder iets van agents die ook een hond hebben? Data genoeg op het doorsnee contactcenter. De ACD-rapportages, verkeersrapporten, het CRM-systeem, quality monitoring-informatie, WFM- en HR-systemen, ERP-systemen…. En dan hebben we het nog niet eens gehad over alle externe bronnen: van social media tot en met webbezoek.
Iedere bron heeft zo zijn eigen gebruiksdoel, het geheim van big data is het combineren van verschillende datasets. Het aantal voorbeelden van zinvol gebruik van big data in customer service is nu nog beperkt, maar er gloort licht aan de horizon.
Big data is vooralsnog een marketingfeestje
Marketing en service hangen nauw met elkaar samen en in veel gevallen gaat de inzet van big data in een customer service omgeving dan ook vooral over marketing. Eerder schreef ik op Toii over de inzet van big data bij bol.com. Deze online winkel werkt (tot nu toe) uitsluitend met bedrijfsgegevens en laat ongestructureerde data (zoals social media en bezoek aan andere sites dan die van bol.com) bewust links liggen. Voor bedrijven die wel externe data mee willen nemen, liggen er kansen om aan de hand van verschillende variabelen bijvoorbeeld bezoekersaantallen of aankoopgedrag te voorspellen. Denk aan informatie over weersomstandigheden, tijd van het jaar, persoonskenmerken en -voorkeuren en feitelijk gedrag van concurrenten. Zo kunnen analytics worden ingezet voor het bepalen van bijvoorbeeld openingstijden van webshops, maar ook voor inkoop. Dat laatste doet Albert Heijn met bevoorrading (mooi weer opkomst? Extra hamburgers in de schappen) of met gepersonaliseerde marketing via relevante, individuele aanbiedingen aan klanten.
Wat zijn interessante vragen voor customer service?
Het heeft geen zin in een bak met data te gaan zoeken naar zinvolle informatie als je niet weet wat je zoekt. Ook voor customer service geldt: het begint bij een relevante vraag. Voor grootschalige customer service operaties kan het interessant zijn meer vat te krijgen op forecasting en planning. Nog niet zo lang geleden had de Amerikaanse luchtvaartonderneming Delta te kampen met een wereldwijde computerstoring. Herhaling van zo’n drama is niet uit te sluiten en ik denk dat veel concullega’s wel zouden willen weten volgens welke patronen het verkeer in zo’n situatie zich opbouwt. Een vergelijkbare vraag kan je stellen over de impact van grootschalige storingen op NPS, winst en omzet.
Voorspellen van verkeer en gedrag
Ook voor grotere virtuele contactcenters, ook in uitbestede varianten, kan het interessant zijn te weten welke krachten het volume aan interacties opjagen. Persoonlijk zou ik wel willen weten wanneer de routers van internetserviceproviders technisch gesproken hun end-of-life bereiken en welke factoren dit proces versnellen. Dat soort vragen zijn interessant voor alle technische producten die op grote schaal verkocht worden, want ze beïnvloeden de gehele customer experience keten van contactcenter tot logistiek. Denk aan automotoren, computers of smartphones van een bepaald type.
En als grotere ziektekostenverzekeraars slim zijn, hebben ze al lang uitgezocht welke variabelen er voor zorgen dat klanten (tegen het einde van het jaar) gaan bellen. Ik denk dat customer service managers als ze een beetje hun best doen, ze ook nog wel andere interessante vragen kunnen formuleren – waarvan een deel waarschijnlijk tegen marketing aanleunt.
Big data is… de juiste vragen stellen
Data is geen informatie en zelfs analytics levert alleen informatie op als er goede vragen worden gesteld. Samsung is overtuigd van de kracht van data. Sterker nog, alle beslissingen bij Samsung moeten op data zijn gebaseerd, aldus Thai Young Kim, Senior manager of Logistic Innovation bij Samsung. De elektronicagigant is steeds meer afhankelijk van e-commerce. In 2014 kocht 15 procent van de inwoners van de EU (28 landen) online producten geleverd door aanbieders uit het buitenland. Het bedrijf wilde daarom weten van welke factoren de acceptatie van tarieven voor express delivery afhangt in de (grensoverschrijdende) Europese markt voor e-commerce. Die tarieven zijn (vanuit kostenperspectief) uiteraard van invloed op de marge van Samsung, maar ook van invloed op de conversie en dus op de omzet.
40.000 transacties analyseren
Samsung betrok in samenwerking met de Erasmus Universiteit in een big data analyse van 40.000 transacties allerlei variabelen: orderfrequentie, orderomvang, frequentie van herhaalaankopen en zaken die van invloed zijn op de vraag naar express levering, zoals besteedbaar inkomen en logistieke kosten. Verderaf gelegen leveradressen gaan gepaard met hogere kosten voor een express-levering en het is interessant om te weten waar het kantelpunt ligt, maar ook wat de vervolgeffecten zijn als je als leverancier (via de tarifering) investeert in express delivery. De uitkomsten lieten zien dat express delivery een gunstige invloed heeft op de financiële performance van Samsung. Express delivery leidt tot meer orders, een grotere orderomvang en meer herhaalaankopen, zo kon op basis van alle verschillende data worden aangetoond. Naarmate het besteedbaar inkomen van de klant hoger was, nam de kans op het bestellen met express delivery toe.
E-learning optimaliseren met big data
Een andere toepassing van big data in customer service ligt in e-learning. Daarbij worden data-analyses ingezet om te bepalen wat de trainee in de toekomst nodig heeft op basis van huidige performance en gebruik van een e-learning omgeving. Er wordt dan gebruik gemaakt van de gebruiksduur van modules, oefeningen en geboekte resultaten, maar ook van commentaren van docenten. Dit maakt het mogelijk e-learning verder te personaliseren. Met predictive analytics kan het programma worden afgestemd op individuele leerstijlen en tijdschema’s. Hiermee ontstaan intelligente educatieve programma’s met een maximale impact op de organisatie en de medewerker.
Er komen nieuwe databronnen op het contactcenter af
De komende tijd zal customer service steeds vaker te maken krijgen met data van connected apparaten – denk aan de connected koelkast van Samsung of de connected tandenborstel van Philips. Naast elektronica gaat het ook om sensoren in auto’s en huizen (zoals de smart energiemeter, de connected car of de connected autoverzekering) die verschijnselen waarnemen in de omgeving. Deze data geven inzicht in feitelijk gedrag (en dat is iets anders dan uitbreid klanttevredenheidsonderzoek, waarin je naar meningen vraagt) en in dat opzicht is de informatie vergelijkbaar met bijvoorbeeld verbruiksgegevens. Dat vergroot de mogelijkheden van customer service om klanten gericht te helpen en te up- en cross sellen.
Bedrijven kunnen deze informatie zelf combineren met andere bedrijfsdata – denk aan gegevens uit enterprise software systemen voor financiële transacties, aankoopgedrag, websitegedrag, logistieke processen, klant- en onderzoeksgegevens, respons op campagnes en productinformatie. En bedrijven kunnen aanhaken op datasets van onderzoeksinstellingen zoals het CBS en SCP. En tot slot zijn er de user generated data – gegevens afkomstig van klanten (social media posts, sociale connecties, ratings, geo-locatie, communicatie, meningen en voorkeuren en activiteiten). De organisatie die als eerste creatief met big data weet om te gaan en bruikbare informatie weet te destilleren uit combinaties van datasets, kan een voorsprong creëren door bijzondere kennis over klanten en consumenten op te bouwen.
Dit is deel 2 van een tweeluik over big data in customer service. Lees hier deel 1 over big data. Beide blogs werden eerder gepubliceerd op Klantcontact.nl.